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The analysis of heat transfer is reduced to the solufion of an ordinary

first-order differential equation by simplifying the dynamic character-

istics of the system.

A gas stream with a variable initial temperature
is passed through a fixed bed of spheres in the di-
rection h. The heat-transfer process is described by
a system of differential equations [1, 2]
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The gas temperature at the inlet section of the bed
is t{0, 7), which is a specified function of time.

The solution of this system of equations, trans-
formed after Laplace, has the form
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For the average temperature of the sphere we have
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The quantity p/v in expressions (6)—(8) can be
neglected, since it accounts for the time in which the
gas is passed through the bed. This time is generally
negligibly small in comparison with the other time
constants of the system. Thus
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where
Wy(p) =exp{RIW (R, p)—11};

W o) =W W(r,p)h  Wy(p)=Wi(p)Wa (p).

Substituting p = jw into the transfer functions W,(p),
Wy (p), or W;(p), we obtain the amplitude-phase fre-
quency characteristics (AFC) of the system:

W(jo)=A(expljg(@)] =Re(w)+jlm(w).  (12)

If the input quantity t(0, 7) oscillates harmonically
with frequency w, expression (12) immediately yields
the amplitude A(w) and the phase shift ¢(w) of the out-
put quantities t(h, 7), t(r,h, 7), or tyy(7) in the quasi-
steady regime. In this case there is no need to re-
turn to the preimages in (9)—(11).

With a nonharmonic variation in t(0, 7), the transi
tion to the preimages in (9)—(11) is an exceedingly
difficult operation; we will therefore simplify the
transfer functions Wi(p), W(r,p), and W, (p).

Figure 1 shows a family of W;(jw) hodographs for
various values of Bi and k. For k < 2Bi/5 + 2 a por-
tion of the hodographs can be approximated by the
expression
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(curves 1-4), and a portion can be approximated for
k < 2Bi/5 + 2 by the expression

(jo) Tarl 07 (14)

(curves 5-1T).

Requiring coincidence of the hodographs W(jw) and
Wy(jw) as w — 0 we derive a system of equations for
the determination of the time constants Ty, T,, T,
and 73 of the approximating expressions (13) and (14):
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An ordinary differential first-order equation with a
lag argument
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corresponds to the frequency characteristic (14) and
is easily solved analytically or graphically for any
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Fig. 1. Amplitude-phase frequency characteristics

of the system within the channel for transmission of

the effect of the gas temperature t{0, 7) 1) at Bi = 3;

k =1;1D 1and 1, respectively; ITI) 3 and 2;1V) 2

and 5; VI) 4 and 10; VII) 4 and 20; figures at points,
values of parameter x = y(w/20)R.

funetion tipn(r) = t(0, 7) [3]. We solve the differential
equation

T, dt oyt (%) +t ) =T M +£ (v) (17)
dT dT mn

as easily, this equation corresponding to the approx-
imating AFC (13).

Figure 2 shows the AFC hodographs for the sphere-
temperature transfer functions W(R, p), W, (p), and

W(0,p) =" 5‘:;1";);” =W (D) 1o
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The W(R, jw) and Wyy(jw) hodographs coincide
satisfactorily in form with the approximating AFC
(13), while the W(0, jw) hodograph coincides satis-
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Fig. 2. Amplitude-phase frequency characteristics

of system within the channel for transmission of

the effect of the gas temperature t(h, 7) and the

sphere temperature at Bi = 3; I) surface temper-

ature t(R, h, 7); II) mean temperature t,(7); III)

center temperature t(0, h, 7}; figures at points,
values of parameter x; = V(w/a)R.

factorily with AFC (14). The time constants Ty, Tj,
T, and  in this case are also determined from sys-
tem (15) in which insteady of W,(p) and Wy(jw) we
have the transfer functions and the AFC of the sphere
temperature: W(R,p) and W(R,j, w), Wy, () and
Wyy(jw), and W(0,p) and W(0, jw).

We will illustrate the application of the dynamic-
analysis method with the following example:
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Fig. 3. Temperature curves (example): 1) gas
temperature t(0, 7), ° C; in input section of bed
2) tth, 7); 3) t(R,h, 7); 4) tay(7); 5) t(0,h, ).

Example, Construct the curves th, 7), t(R,h, 1),
tay(7), and t{0,h, 1) when k = 10 and Bi = 4 and for
the exponential function t(0, 7)

at o
t(O,r)=lOOO[1—exp (~ﬁ>]’ C. (a)
Solution. Let us subject the input quantity (a) to
Laplace transformation:



158

1000
2 k3
p(—&p+1)
a

so that the images of the output quantities are written
as follows:
the gas temperature
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the temperature of the sphere surface
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the average sphere temperature
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the temperature of the sphere center

£(0,h, p) = W ()£ (k, p), ()
where
W= R
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! 6 ' 3Bi

2 2
_l/l—+ 2_ 4 1_)i=0.079R—.
90 45 Bi 9Bi*/ @ a

Turning to the preimages in (¢)~(f), we find the
unknown output quantities. These are shown in Fig. 3.

NOTATION

7 is the time; h is the bed coordinate in the direc-
tion of gas flow; r is the point coordinate inside the
sphere; R is the sphere radius; t(r,h, 7) is the tem-
perature of the sphere point; tyy(7) is the mean integral
temperature of the sphere; t(h, 7) is the gas temper-
ature; for the sphere material, o is the thermal dif-
fusivity; A is the thermal conductivity; for the gas
flow ¢ is the volumetric heat capacity; f is the area of
effective cross section; v is the velocity; « is the co-
efficient of heat transfer from gas to sphere surfaces;
F is the sphere surface per unit volume of bed; S is
the area of the bed section; k is a parameter; Bi is the
Biot number; p is the parameter of the Laplace trans-
form; t(p) is the Laplace transformation of t(r); W(p}
is the transfer function; W(jw) is the amplitude-phase
frequency characteristic; j = V=1; @ is the angular
frequency; 7y is the time lag; T and T, are time con-
stants of the aperiodic link; T, is the time constant of
the forcing link; t;, is the input value; t, 4 is the out-
put value; Im(w) is the imaginary frequency character-
istic; Re(w) is the material frequency characteristic.
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